
1

1Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2 Physics of Condensed Matter & Complex Systems, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Leveraging device variation to strengthen memristor based reservoir

computing

Samip Karki1, Sundar Kunwar1, Francesco Caravelli2, & Aiping Chen1

The conventional Von Neumann computer architecture is showing to be inadequate

to handle the increasing demand for artificial neural networks in our society. Inspired

by the human brain, the field of neuromorphic computing seeks to create hardware-

based neural networks to bypass the bottleneck of software-based computation.

Memristors, for their electrical memory properties, are one popular candidate for

hardware implementation of neuromorphic computing. One type of neuromorphic

computing scheme is reservoir computing, a recurrent neural network architecture

which specializes in temporal tasks and is easily trained using linear regression. In

this paper, I successfully implement reservoir computing using a delay-feedback

system and numerically simulated memristor dynamics to perform a chaotic time

series prediction task and show that the reservoir network can be expanded by adding

unique devices in parallel.

2

INTRODUCTION

Artificial neural networks (ANNs) are

powerful algorithms inspired from biological

neural networks. Just as children learn to walk,

speak language, and identify objects in their

surroundings by repetitive experiences, the same

principle allows artificial neural networks to

solve a variety of different tasks. ANNs can be

thought up as mathematical functions which do a

series of operations on some input. These

operations have adjustable parameters called

weights that control the magnitude of the

operations. During training, ANNs can learn by

incrementally adjusting their weights so that the

network output approaches the desired output of

training data. In this way, ANNs can be taught to

learn to solve a variety of problems.

Today in our data driven world, ANNs are

being used to identify objects in images, translate

spoken words into text, and much more. The use

of ANNs will only increase into the future,

however, limitations of computational efficiency

hinder their scalability, flexibility, and

sustainability. Currently, the power required to

train large neural networks such as the GPT-4

Figure 1| Reservoir computing architecture. a) Schematic of the traditional reservoir computing system. Input layer

is connected to the reservoir, where nonlinear reservoir nodes have fixed but random weights and connections. The

output is a linear weighted sum of the reservoir nodes. b) Schematic of memristor-based time delay reservoir

computing system. With time multiplexing, the input is transformed into a temporal voltage input stream of length τ.

This voltage is applied to the memristor. The reservoir is made up of M virtual nodes which correspond to the

memristor’s response at every interval δ, where 𝜏 = 𝛿 ⋅ 𝑀. Connections between the virtual nodes of the reservoir and

the output layer are the same as in the traditional RC system. c) Schematic of extended time-delay RC system. The

voltage generated from the time multiplexing process is applied to different memristors in parallel. The output is a

weighted linear combination of all virtual nodes.

3

language model is on the order of magnitude of

several kilowatts1. This much power consumption

is not feasible for the research and development

of ANNs in offline applications such as in the use

of phones, mobile robots, and self-driving cars. In

addition, the energy usage of ANNs has a

significant global environmental cost2. A primary

reason for the large amount of power being used

by ANNs is that digital computers use the von

Neumann architecture which separates

computation and memory storage. This so called

von Neumann bottleneck fundamentally limits the

speed of computation and is a major inefficiency

when training large ANNs, as the networks must

use large amounts of computational resources to

move millions or even billions of weights

between memory and CPU. To resolve this

bottleneck issue, researchers have looked at the

human brain for answers.

In contrast to the several kilowatts of

power required to train large ANNs, the human

brain only uses on average 20𝑊 of power, yet it

is still able to easily perform tasks which would

be difficult for ANNs such as image recognition

and speech recognition1. For this reason, the field

of neuromorphic computing wishes to implement

aspects of the human brain into ANNs for more

efficient computing. A characteristic of

neuromorphic computing is in-memory

computing, which typically requires doing the

computation in a physical hardware or analog

system.

Reservoir Computing (RC) is an example

of neuromorphic computing which takes

influence from the recurrent dynamics of the

brain. The recurrent connections of RC make it

particularly well suited for temporal tasks, such

as time series prediction and voice recognition,

tasks which can be difficult for traditional

feedforward networks. A schematic of the

traditional RC system is given in figure 1a). The

RC network is made up of three parts, the input

layer, the reservoir which is made up of random

but fixed connections, and the output layer. RC

works by nonlinearly mapping the input to a

higher dimensional reservoir space which can be

used to discern features of the input. While other

recurrent neural network frameworks can be

difficult to train with traditional methods like

gradient descent, training in RC is simple because

only the weights connecting the reservoir to the

output are trained, reducing training to a linear

task. In addition, reservoirs have a fading

memory, meaning the state of the reservoir is

dependent on the state in the recent past but not

the far past. This fading memory is why RC is

successful at time series prediction. The RC

network has memory of multiple past iterations of

the time series even when the input may only be a

single iteration. Reservoir computers have been

implemented in a handful of physical systems

such as photonics, spintronic oscillators, and

memristors. Because of their resistive switching

memory properties, memristors are a popular

candidate for implementation of reservoir

computers and neuromorphic computing in

general.

Memristors are nanoelectronic circuit

devices which exhibit memory properties. The

electronic resistance of a memristor is dependent

on the voltage applied to it in the past. For

example, applying two 3𝑉 pulses to a memristor

may result in a 30µ𝐴 response during the first

pulse and a 35µ𝐴 response during the second

pulse, because the resistance of the memristor

changed as a result of the first pulse. Because of

these memory properties, memristors are a

popular topic of research in the neuromorphic

computing field.

Previous works4,5 have explored using

memristor based RC with a time-delay system,

shown in figure 1 b). These are a popular way of

implementing RC systems because the hardware

implementation is very simple, often only

needing a single memristor and a voltage source

along with the appropriate software for data

processing. To extend the reservoir further,

additional voltage sources and memristors are

added in parallel4,5. However, every additional

voltage source added to the system further

complicates the hardware and increases energy

consumption of the whole system. Instead, we

4

propose extending the time delay RC system by

simply applying a single voltage source to several

memristors in parallel, with each memristor

having unique dynamics. In this way, we balance

increasing the dimensionality of the reservoir and

improve performance while keeping the overall

system low energy and simple to implement. We

test the performance of our extended time-delay

RC system with two chaotic time series tasks.

PROCEDURE
A. Delay-Feedback RC

Time-delay RC system with a single delay

line, as shown in figure 1 b), uses the dynamic

response of a single nonlinear node, in our case a

memristor, to extract features from the input. For

the case of time series prediction, the input to the

network is a single scalar value 𝑢(𝑛), the 𝑛𝑡ℎ

value of the time series, and the output is the

prediction of 𝑢(𝑛 + 1). With a process called

time multiplexing (methods), the input 𝑢(𝑛) is

used to generate a sequence of 𝑴 voltage pulses

with binary values which is applied to the

memristor. The values of the memristor response

after each voltage pulse are the 𝑀 virtual nodes of

Figure 2| Simulated Memristor Dynamics and Device Variation. a) Simulated I-V hysteresis curves of memristor

model with different values of parameter η. b) Demonstration of short-term memory of simulated memristor. Input

voltage sequence and current response are in blue and red, respectively. Initial write voltage (3V, 100μs) is applied to

perturb the system away from the equilibrium state. Several read pulses of (2.4V, 5μs) outline the gradual relaxation of

the memristor model back to equilibrium. c) Device response variation during reservoir computing. Input voltage

sequence (blue) is generated from time multiplexing during Hénon map prediction task. Three devices with different

values of parameter η (orange η = 1.3, purple η = 1.0, red η = 0.7) each have a distinct current response.

5

the reservoir, which completes the nonlinear

transformation of the input. These virtual nodes

are coupled to each other because of the memory

dynamics of the memristor. The network is

trained by finding the correct weight matrix 𝑾

which maps the virtual nodes to a prediction of

𝑢(𝑛 + 1) (Methods).

The reservoir is extended by having

multiple devices in parallel as shown in figure

1c). Each memristor will receive the same voltage

sequence but generate different responses. Using

virtual nodes from all the memristors, we extend

the dimensionality of the reservoir further than

with a single device.

B. Chaotic Time Series Prediction

Two different chaotic time series are

considered in this work. One is the Hénon map:

Figure 3| Performance of Hénon Map Prediction with Impact of Device Variation. a) and b) are 2-D

representations of the predicted results of Hénon map task where the target is in black and the RC output is in orange.

a) shows the results of a single memristor RC system, which had a NRMSE of 0.0279. b) shows the result as an RC

network with 10 memristors in parallel, where parameter η was linearly spaced between [0.7 - 1.3], achieving a

NRMSE of 0.0082. Other parameters are set to be 𝑀 = 30, 𝑉𝑚𝑎𝑥 = 3.0𝑉, 𝑉𝑚𝑖𝑛 = 2.0𝑉, and 𝛿 = 15𝜇𝑠. c)

Performance of the 10 memristor RC network from b) with the predicted sequence in orange and the target sequence in

black. d) Performance improves as more memristors are added in parallel. To consider networks with optimized masks,

each point represents the best performance from 30 simulations each with randomized masks. Memristors in parallel

each had different parameters η which were linearly spaced between [0.7 - 1.3] (black), [0.8 - 1.2] (red), or [0.9 - 1.1]

(blue). The same training sequence was used in every simulation.

6

𝑥(𝑛 + 1) = 𝑦(𝑛) − 1.4𝑥(𝑛)2 (1)

𝑦(𝑛 + 1) = 0.3𝑥(𝑛) + 𝑤(𝑛) (2)

where 𝑤(𝑛) is gaussian noise with mean value of

0 and standard deviation of 0.0025. The RC

network predicts will predict 𝑥(𝑛 + 1) with 𝑥(𝑛)

as input. The other time series is the Mackey-

Glass oscillator:

𝑑𝑥

𝑑𝑡
= 𝛽

𝑥(𝑡 − 𝜏)

1 + (𝑥(𝑡 − 𝜏))
𝑛 − 𝛾𝑥(𝑡) (3)

where parameters are set to 𝛾 = 0.1, 𝜏 = 18, 𝑛 =

 10, and 𝛽 = 0.2. To make this sequence

discrete, the time series is made by sampling

every 3 time-units of the 𝑥(𝑡).

2000 iterations of each time series are

generated. The first half of these datasets are used

for training the weights of the network, and the

second half of these datasets are used to evaluate

performance (Methods).

Performance of each prediction was

measured with Normalized-Root-Mean-Square-

Error (NRMSE):

where (·)2 is elementwise, ⟨·⟩, is the mean of the

vector, S is a matrix where the column are the

virtual nodes generated for each 𝑢(𝑛), 𝐘 is a

vector of the targets, and �̅� is the mean of the

targets.

C. Memristor Model

The following numerical model was used to

simulate the dynamics of a memristor device

from Zhong et al. (2021):

𝑑𝑤

𝑑𝑡
= 𝜆𝑅(𝑤)sinh(𝜂𝑉(𝑡)) −

𝑤(𝑡) − 𝑤0

𝜅
(5)

𝐼(𝑡) = 𝛾𝑤(𝑡)2sinh(𝑑 𝑉(𝑡)) (6)

where 𝑤 is the state variable, 𝑉(𝑡) is the input

voltage, 𝐼(𝑡) is the current response, 𝑅(𝑤) is a

window function, and 𝛾, 𝑑, 𝜆, 𝜂, 𝜅 are all

adjustable parameters. A detailed description of

the model is given in "methods".

In this work, we are interested in

exploring how variation of devices in parallel

affects the network performance. To model

different devices, the parameter 𝜂 was varied

between 0.7 and 1.3. Figure 2a) illustrates how

when performing a voltage sweep, the shape of

the hysteresis loop differs when the parameter 𝜂

is changed. When 𝜂 is increased, the device

conductance becomes more sensitive to the

applied voltage. During the time multiplexing

algorithm, each device will receive the same

input voltage train and generate a unique

response, figure 2c). Each memristor response

will have a unique set of virtual nodes. By

including all the virtual nodes in our reservoir, the

dimensionality of the reservoir is increased far

beyond what it would be with a single device.

Our model also incorporates short-term memory

dynamics of volatile memristors which is crucial

for RC. Figure 2b) illustrates the short-term

memory relaxation of the memristor model after a

large initial voltage pulse.

RESULTS
 Figure 3 shows the performance of the

reservoir computing network during the Hénon

Map prediction task. The side-by-side

comparison of figure 3a) and figure 3b) show

visually that the network with 10 unique devices

in parallel was able to perform better than the

single device. The 10-device network was able to

achieve a NRMSE of 0.0082 compared to the

single device which only achieved 0.0279.

Figure 3d) shows that NRMSE decreases as the

number of devices in parallel is increased. In

addition, performance was slightly better when

the interval of parameter 𝜂 was increased,

(4)

7

suggesting that more variation between the

devices will further improve performance.

 Results of the Mackey-Glass prediction

task are in figure 4. Figure 4a) shows a side-by-

side comparison of the performance of the 10-

device network and the single device network.

Just like in the Hénon map prediction task, the

10-device network was able to perform much

better, achieving a NRMSE of 0.0387, compared

to the single device network which achieved

NRMSE of 0.1586. Figure 4b) shows how

NRMSE decreases with the number of devices in

parallel. Just like in the Hénon-Map prediction, at

around 10 devices, performance will saturate and

no longer lower NRMSE. This is because as more

devices are added in parallel, the devices are

becoming more similar to their neighbors because

the interval of parameter 𝜂 has not changed.

However, in the simulations where the interval of

parameter 𝜂 was greater, NRMSE continued to

decrease even further with an increased number

of devices before saturating. This suggests that if

we want to continue to increase the performance

of the network, even greater device variation is

required to avoid having device responses which

are too similar.

CONCLUSION

The spring SULI semester was an

extension of my work during the fall SULI

project. Because I continued the same project, I

was able to explore reservoir computing in a far

more sophisticated way than my initial exposure

of it in the fall. There is still much more I would

like to do before finishing this project. The idea

of applying the same voltage sequence to

different devices in parallel is a novel idea which

I would like to publish a paper about. To make

my results stronger, I am integrating experimental

Figure 4| Performance of Mackey-Glass Prediction with Impact of Device Variation. a) Comparison

of reservoir computing output of single device network (orange), 10 device network (blue), and target

sequence (black) during the Mackey-Glass prediction task. Parameter η was linearly spaced between [0.7

- 1.3] in the network with 10 devices. Mask was shuffled for both the single device and 10 device

networks until optimal masks were found to eliminate the change in performance due to random masks.

The single device network achieved a NRMSE of 0.1586. The 10 device network achieved a NRMSE of

0.0387. b) Performance improves as more memristors are added in parallel. Each point represents the best

performing network out of 30 simulations where the mask is randomized each simulation. Memristors in

parallel each had different parameters η which were linearly spaced between [0.7 - 1.3] (black), [0.8 - 1.2]

(red), or [0.9 - 1.1] (blue). The same training sequence was used in every simulation.

8

data into computational simulations. Currently, I

am working to model current-voltage behavior of

devices fabricated by scientists in my group. By

incorporating these device characteristics, the

reservoir computing results I have found will be

grounded in the physics of the memristor device.

I plan to continue to work on this project during

the summer in order to refine and publish my

results.

My SULI internships at Los Alamos

National Laboratory have been incredibly

formative. I have developed a handful of skills

which will be useful for graduate school and

beyond. I develop the ability to find answers by

diving deep into established literature. I learned

how to ask questions and develop protocols to

test ideas I had. Most importantly, I gained

confidence that I could lead my own research

project. There were countless instances where I

did not understand what I was reading or did not

know how to execute an idea I had in my head.

But, after enough time of close reading and

brainstorming, I was always able to arrive at a

moment where it made sense. With this in mind, I

am sure I will be able to tackle all sorts of novel

problem I encounter in graduate school and

elsewhere.

METHODS
1. Time Multiplexing and Training

The time multiplexing step is as follows. The

input 𝑢(𝑛) is multiplied by a random and fixed

vector 𝑴, called the mask, with dimensions
(𝑀 × 1). In this work, we consider a binary mask

where the elements in 𝑴 take on the values of 1

or −1 by random. The product 𝑴 ∙ 𝑢(𝑛) = 𝑱 is

then scaled to an appropriate maximum and

minimum voltage, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥. Optimal values

for 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 were found by trial and error.

A sequence of voltage pulses of total duration 𝜏 is

generated by holding each component in 𝑱

constant for a duration 𝛿, where 𝜏 = 𝑀 ∙ 𝛿. This

voltage train is applied to each memristor in

parallel to generate a current response of length τ.

𝑀 virtual nodes are sampled from each memristor

response at every time interval δ, the total virtual

nodes of the network is 𝑀 × 𝑁, where 𝑁 is the

number of memristors in parallel. The collection

of virtual nodes makes up the elements of 𝒔(𝑛),

the reservoir state vector. For every 𝑢(𝑛) in the

training dataset, 𝒔(𝑛) will make up the columns

of 𝑺. Training is done by finding the weight

matrix 𝑾 which minimizes the distance between

the output of the RC network 𝑾𝑺 and the targets

𝒀, that is minimizes ||𝑾𝑺 − 𝒀 ||. This is done by

choosing

𝑾 = 𝒀𝑺𝑻(𝑺𝑺𝑻)† (6)

Once the network is trained, a separate dataset is

used to evaluate the performance of the RC

network.

2. Generating Time-Series Datasets

The time series datasets are generated using

equations (1) & (2) or (3). For each time series

task, 2001 iterations are generated far away from

the initial conditions of the sequences. The

iterations 2 to 1001 are used for training and the

iterations 1002 to 2001 are used for testing. To

avoid the initial transient phase of the reservoir,

the first 5 points of the reservoir output and the

target sequence are thrown out in both training

and testing datasets for the Hénon map

prediction. Likewise, for the Mackey-Glass

oscillator prediction, the first 20 are thrown out of

the reservoir output and target for training and

testing datasets.

3. Memristor Model

The parameters for the numerical model

described by equations (5) and (6) have the

following values: γ = 2.14 × 10−6, 𝑑 = 1.4,

λ = 1300, κ = 400 × 10−6, and 𝑤0 = 0.5. This

model describes the dynamics of the state

variable 𝑤(𝑡), a dimensionless variable related to

conductance which affects how much current will

pass through the memristor for a given voltage

𝑉(𝑡); when 𝑤(𝑡) is large, the magnitude of the

current response will increase. The window

function:

9

fixes 𝑤 between 0 and 1. 𝑤 will increase when

there is a positive voltage and decrease when

there is a negative voltage. In equation (5), short

term memory is achieved with the second term in

the first equation. Parameter κ is the decay time

constant which describes how fast the model

returns to its equilibrium state. For our model, the

parameter κ is set to 400 μ𝑠. Equation (5) was

solved using first order Runge-Kutta algorithm

with a time step of 1μ𝑠.

REFERENCES

1. Matteo Cucchi et al 2022 Neuromorph. Comput.

Eng. 2 032002

2. Strubell, E., Ganesh, A., & McCallum, A. (2020).

Energy and Policy Considerations for Modern

Deep Learning Research. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(09),

13693-13696.

3. Appeltant, L. et al. Information processing using a

single dynamical node as complex system. Nat.

Commun. 2:468 doi: 10.1038 / ncomms1476

(2011)

4. Zhong, Y., Tang, J., Li, X. et al. Dynamic

memristor-based reservoir computing for high-

efficiency temporal signal processing. Nat

Commun 12, 408 (2021).

5. Du, C., Cai, F., Zidan, M.A. et al. Reservoir

computing using dynamic memristors for temporal

information processing. Nat Commun 8, 2204

(2017).

Acknowledgements

I’d like to thank the Department of Energy for

funding my research internship as well as Dr.

Aiping Chen, Dr. Sundar Kunwar, and Dr.

Francesco Caravelli for their mentorship.

(7)

