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The conventional Von Neumann computer architecture is showing to be inadequate 

to handle the increasing demand for artificial neural networks in our society. Inspired 

by the human brain, the field of neuromorphic computing seeks to create hardware-

based neural networks to bypass the bottleneck of software-based computation. 

Memristors, for their electrical memory properties, are one popular candidate for 

hardware implementation of neuromorphic computing. One type of neuromorphic 

computing scheme is reservoir computing, a recurrent neural network architecture 

which specializes in temporal tasks and is easily trained using linear regression. In 

this paper, I successfully implement reservoir computing using a delay-feedback 

system and numerically simulated memristor dynamics to perform a chaotic time 

series prediction task and show that the reservoir network can be expanded by adding 

unique devices in parallel. 
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INTRODUCTION 

Artificial neural networks (ANNs) are 

powerful algorithms inspired from biological 

neural networks. Just as children learn to walk, 

speak language, and identify objects in their 

surroundings by repetitive experiences, the same 

principle allows artificial neural networks to 

solve a variety of different tasks. ANNs can be 

thought up as mathematical functions which do a 

series of operations on some input. These 

operations have adjustable parameters called 

weights that control the magnitude of the 

operations. During training, ANNs can learn by 

incrementally adjusting their weights so that the 

network output approaches the desired output of 

training data. In this way, ANNs can be taught to 

learn to solve a variety of problems.  

Today in our data driven world, ANNs are 

being used to identify objects in images, translate 

spoken words into text, and much more. The use 

of ANNs will only increase into the future, 

however, limitations of computational efficiency 

hinder their scalability, flexibility, and 

sustainability. Currently, the power required to 

train large neural networks such as the GPT-4 

Figure 1| Reservoir computing architecture. a) Schematic of the traditional reservoir computing system. Input layer 

is connected to the reservoir, where nonlinear reservoir nodes have fixed but random weights and connections. The 

output is a linear weighted sum of the reservoir nodes. b) Schematic of memristor-based time delay reservoir 

computing system. With time multiplexing, the input is transformed into a temporal voltage input stream of length τ. 

This voltage is applied to the memristor. The reservoir is made up of M virtual nodes which correspond to the 

memristor’s response at every interval δ, where 𝜏 = 𝛿 ⋅ 𝑀. Connections between the virtual nodes of the reservoir and 

the output layer are the same as in the traditional RC system. c) Schematic of extended time-delay RC system. The 

voltage generated from the time multiplexing process is applied to different memristors in parallel. The output is a 

weighted linear combination of all virtual nodes. 
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language model is on the order of magnitude of 

several kilowatts1. This much power consumption 

is not feasible for the research and development 

of ANNs in offline applications such as in the use 

of phones, mobile robots, and self-driving cars. In 

addition, the energy usage of ANNs has a 

significant global environmental cost2. A primary 

reason for the large amount of power being used 

by ANNs is that digital computers use the von 

Neumann architecture which separates 

computation and memory storage.  This so called 

von Neumann bottleneck fundamentally limits the 

speed of computation and is a major inefficiency 

when training large ANNs, as the networks must 

use large amounts of computational resources to 

move millions or even billions of weights 

between memory and CPU. To resolve this 

bottleneck issue, researchers have looked at the 

human brain for answers. 

In contrast to the several kilowatts of 

power required to train large ANNs, the human 

brain only uses on average 20𝑊 of power, yet it 

is still able to easily perform tasks which would 

be difficult for ANNs such as image recognition 

and speech recognition1. For this reason, the field 

of neuromorphic computing wishes to implement 

aspects of the human brain into ANNs for more 

efficient computing. A characteristic of 

neuromorphic computing is in-memory 

computing, which typically requires doing the 

computation in a physical hardware or analog 

system. 

Reservoir Computing (RC) is an example 

of neuromorphic computing which takes 

influence from the recurrent dynamics of the 

brain. The recurrent connections of RC make it 

particularly well suited for temporal tasks, such 

as time series prediction and voice recognition, 

tasks which can be difficult for traditional 

feedforward networks. A schematic of the 

traditional RC system is given in figure 1a). The 

RC network is made up of three parts, the input 

layer, the reservoir which is made up of random 

but fixed connections, and the output layer. RC 

works by nonlinearly mapping the input to a 

higher dimensional reservoir space which can be 

used to discern features of the input. While other 

recurrent neural network frameworks can be 

difficult to train with traditional methods like 

gradient descent, training in RC is simple because 

only the weights connecting the reservoir to the 

output are trained, reducing training to a linear 

task. In addition, reservoirs have a fading 

memory, meaning the state of the reservoir is 

dependent on the state in the recent past but not 

the far past. This fading memory is why RC is 

successful at time series prediction. The RC 

network has memory of multiple past iterations of 

the time series even when the input may only be a 

single iteration. Reservoir computers have been 

implemented in a handful of physical systems 

such as photonics, spintronic oscillators, and 

memristors. Because of their resistive switching 

memory properties, memristors are a popular 

candidate for implementation of reservoir 

computers and neuromorphic computing in 

general. 

Memristors are nanoelectronic circuit 

devices which exhibit memory properties. The 

electronic resistance of a memristor is dependent 

on the voltage applied to it in the past. For 

example, applying two 3𝑉 pulses to a memristor 

may result in a 30µ𝐴 response during the first 

pulse and a 35µ𝐴 response during the second 

pulse, because the resistance of the memristor 

changed as a result of the first pulse. Because of 

these memory properties, memristors are a 

popular topic of research in the neuromorphic 

computing field. 

Previous works4,5 have explored using 

memristor based RC with a time-delay system, 

shown in figure 1 b). These are a popular way of 

implementing RC systems because the hardware 

implementation is very simple, often only 

needing a single memristor and a voltage source 

along with the appropriate software for data 

processing. To extend the reservoir further, 

additional voltage sources and memristors are 

added in parallel4,5. However, every additional 

voltage source added to the system further 

complicates the hardware and increases energy 

consumption of the whole system. Instead, we 
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propose extending the time delay RC system by 

simply applying a single voltage source to several 

memristors in parallel, with each memristor 

having unique dynamics. In this way, we balance 

increasing the dimensionality of the reservoir and 

improve performance while keeping the overall 

system low energy and simple to implement. We 

test the performance of our extended time-delay 

RC system with two chaotic time series tasks. 

 

PROCEDURE 
A. Delay-Feedback RC 

Time-delay RC system with a single delay 

line, as shown in figure 1 b), uses the dynamic 

response of a single nonlinear node, in our case a 

memristor, to extract features from the input. For 

the case of time series prediction, the input to the 

network is a single scalar value 𝑢(𝑛), the 𝑛𝑡ℎ 

value of the time series, and the output is the 

prediction of 𝑢(𝑛 + 1). With a process called 

time multiplexing (methods), the input 𝑢(𝑛) is 

used to generate a sequence of 𝑴 voltage pulses 

with binary values which is applied to the 

memristor. The values of the memristor response 

after each voltage pulse are the 𝑀 virtual nodes of 

Figure 2| Simulated Memristor Dynamics and Device Variation. a) Simulated I-V hysteresis curves of memristor 

model with different values of parameter η. b) Demonstration of short-term memory of simulated memristor. Input 

voltage sequence and current response are in blue and red, respectively. Initial write voltage (3V, 100μs) is applied to 

perturb the system away from the equilibrium state. Several read pulses of (2.4V, 5μs) outline the gradual relaxation of 

the memristor model back to equilibrium. c) Device response variation during reservoir computing. Input voltage 

sequence (blue) is generated from time multiplexing during Hénon map prediction task. Three devices with different 

values of parameter η (orange η = 1.3, purple η = 1.0, red η = 0.7) each have a distinct current response. 
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the reservoir, which completes the nonlinear 

transformation of the input. These virtual nodes 

are coupled to each other because of the memory 

dynamics of the memristor. The network is 

trained by finding the correct weight matrix 𝑾 

which maps the virtual nodes to a prediction of 

𝑢(𝑛 + 1) (Methods). 

The reservoir is extended by having 

multiple devices in parallel as shown in figure 

1c). Each memristor will receive the same voltage 

sequence but generate different responses. Using 

virtual nodes from all the memristors, we extend 

the dimensionality of the reservoir further than 

with a single device. 

 

B. Chaotic Time Series Prediction 

 

Two different chaotic time series are 

considered in this work. One is the Hénon map: 

Figure 3| Performance of Hénon Map Prediction with Impact of Device Variation. a) and b) are 2-D 

representations of the predicted results of Hénon map task where the target is in black and the RC output is in orange. 

a) shows the results of a single memristor RC system, which had a NRMSE of 0.0279. b) shows the result as an RC 

network with 10 memristors in parallel, where parameter η was linearly spaced between [0.7 - 1.3], achieving a 

NRMSE of 0.0082. Other parameters are set to be 𝑀 = 30, 𝑉𝑚𝑎𝑥 = 3.0𝑉, 𝑉𝑚𝑖𝑛 = 2.0𝑉, and 𝛿 = 15𝜇𝑠. c) 

Performance of the 10 memristor RC network from b) with the predicted sequence in orange and the target sequence in 

black. d) Performance improves as more memristors are added in parallel. To consider networks with optimized masks, 

each point represents the best performance from 30 simulations each with randomized masks. Memristors in parallel 

each had different parameters η which were linearly spaced between [0.7 - 1.3] (black), [0.8 - 1.2] (red), or [0.9 - 1.1] 

(blue). The same training sequence was used in every simulation. 
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𝑥(𝑛 + 1) = 𝑦(𝑛) − 1.4𝑥(𝑛)2 (1) 
 

𝑦(𝑛 + 1) = 0.3𝑥(𝑛) + 𝑤(𝑛) (2) 

  

 

where 𝑤(𝑛) is gaussian noise with mean value of 

0 and standard deviation of 0.0025. The RC 

network predicts will predict 𝑥(𝑛 + 1) with 𝑥(𝑛) 

as input. The other time series is the Mackey-

Glass oscillator: 

 
𝑑𝑥

𝑑𝑡
= 𝛽

𝑥(𝑡 − 𝜏)

1 + (𝑥(𝑡 − 𝜏))
𝑛 − 𝛾𝑥(𝑡) (3) 

 

  

where parameters are set to 𝛾 = 0.1, 𝜏 = 18, 𝑛 =

 10, and  𝛽 = 0.2. To make this sequence 

discrete, the time series is made by sampling 

every 3 time-units of the 𝑥(𝑡). 

2000 iterations of each time series are 

generated. The first half of these datasets are used 

for training the weights of the network, and the 

second half of these datasets are used to evaluate 

performance (Methods). 

Performance of each prediction was 

measured with Normalized-Root-Mean-Square-

Error (NRMSE): 

 
where (·)2 is elementwise, ⟨·⟩, is the mean of the 

vector, S is a matrix where the column are the 

virtual nodes generated for each 𝑢(𝑛), 𝐘 is a 

vector of the targets, and �̅� is the mean of the 

targets. 

 

C. Memristor Model 

The following numerical model was used to 

simulate the dynamics of a memristor device 

from Zhong et al. (2021): 

 
𝑑𝑤

𝑑𝑡
= 𝜆𝑅(𝑤)sinh(𝜂𝑉(𝑡)) −

𝑤(𝑡) − 𝑤0

𝜅
(5) 

 

𝐼(𝑡) = 𝛾𝑤(𝑡)2sinh(𝑑 𝑉(𝑡)) (6) 

 

where 𝑤 is the state variable, 𝑉(𝑡) is the input 

voltage, 𝐼(𝑡) is the current response, 𝑅(𝑤) is a 

window function, and 𝛾, 𝑑, 𝜆, 𝜂, 𝜅 are all 

adjustable parameters. A detailed description of 

the model is given in "methods". 

In this work, we are interested in 

exploring how variation of devices in parallel 

affects the network performance. To model 

different devices, the parameter 𝜂 was varied 

between 0.7 and 1.3. Figure 2a) illustrates how 

when performing a voltage sweep, the shape of 

the hysteresis loop differs when the parameter 𝜂 

is changed. When 𝜂 is increased, the device 

conductance becomes more sensitive to the 

applied voltage. During the time multiplexing 

algorithm, each device will receive the same 

input voltage train and generate a unique 

response, figure 2c). Each memristor response 

will have a unique set of virtual nodes. By 

including all the virtual nodes in our reservoir, the 

dimensionality of the reservoir is increased far 

beyond what it would be with a single device. 

Our model also incorporates short-term memory 

dynamics of volatile memristors which is crucial 

for RC. Figure 2b) illustrates the short-term 

memory relaxation of the memristor model after a 

large initial voltage pulse. 

 

RESULTS 
 Figure 3 shows the performance of the 

reservoir computing network during the Hénon 

Map prediction task. The side-by-side 

comparison of figure 3a) and figure 3b) show 

visually that the network with 10 unique devices 

in parallel was able to perform better than the 

single device. The 10-device network was able to 

achieve a NRMSE of 0.0082 compared to the 

single device which only achieved 0.0279. 

Figure 3d) shows that NRMSE decreases as the 

number of devices in parallel is increased. In 

addition, performance was slightly better when 

the interval of parameter 𝜂 was increased, 

(4) 
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suggesting that more variation between the 

devices will further improve performance. 

 Results of the Mackey-Glass prediction 

task are in figure 4. Figure 4a) shows a side-by-

side comparison of the performance of the 10-

device network and the single device network. 

Just like in the Hénon map prediction task, the 

10-device network was able to perform much 

better, achieving a NRMSE of 0.0387, compared 

to the single device network which achieved 

NRMSE of 0.1586. Figure 4b) shows how 

NRMSE decreases with the number of devices in 

parallel. Just like in the Hénon-Map prediction, at 

around 10 devices, performance will saturate and 

no longer lower NRMSE. This is because as more 

devices are added in parallel, the devices are 

becoming more similar to their neighbors because 

the interval of parameter 𝜂 has not changed. 

However, in the simulations where the interval of 

parameter 𝜂 was greater, NRMSE continued to 

decrease even further with an increased number 

of devices before saturating. This suggests that if 

we want to continue to increase the performance 

of the network, even greater device variation is 

required to avoid having device responses which 

are too similar. 

 

CONCLUSION 

  
The spring SULI semester was an 

extension of my work during the fall SULI 

project. Because I continued the same project, I 

was able to explore reservoir computing in a far 

more sophisticated way than my initial exposure 

of it in the fall. There is still much more I would 

like to do before finishing this project. The idea 

of applying the same voltage sequence to 

different devices in parallel is a novel idea which 

I would like to publish a paper about. To make 

my results stronger, I am integrating experimental 

Figure 4| Performance of Mackey-Glass Prediction with Impact of Device Variation. a) Comparison 

of reservoir computing output of single device network (orange), 10 device network (blue), and target 

sequence (black) during the Mackey-Glass prediction task. Parameter η was linearly spaced between  [0.7 

- 1.3] in the network with 10 devices. Mask was shuffled for both the single device and 10 device 

networks until optimal masks were found to eliminate the change in performance due to random masks. 

The single device network achieved a NRMSE of 0.1586. The 10 device network achieved a NRMSE of 

0.0387. b) Performance improves as more memristors are added in parallel. Each point represents the best 

performing network out of 30 simulations where the mask is randomized each simulation. Memristors in 

parallel each had different parameters η which were linearly spaced between [0.7 - 1.3] (black), [0.8 - 1.2] 

(red), or [0.9 - 1.1] (blue). The same training sequence was used in every simulation. 
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data into computational simulations. Currently, I 

am working to model current-voltage behavior of 

devices fabricated by scientists in my group. By 

incorporating these device characteristics, the 

reservoir computing results I have found will be 

grounded in the physics of the memristor device. 

I plan to continue to work on this project during 

the summer in order to refine and publish my 

results. 

My SULI internships at Los Alamos 

National Laboratory have been incredibly 

formative. I have developed a handful of skills 

which will be useful for graduate school and 

beyond. I develop the ability to find answers by 

diving deep into established literature. I learned 

how to ask questions and develop protocols to 

test ideas I had. Most importantly, I gained 

confidence that I could lead my own research 

project. There were countless instances where I 

did not understand what I was reading or did not 

know how to execute an idea I had in my head. 

But, after enough time of close reading and 

brainstorming, I was always able to arrive at a 

moment where it made sense. With this in mind, I 

am sure I will be able to tackle all sorts of novel 

problem I encounter in graduate school and 

elsewhere. 

 

METHODS 
1. Time Multiplexing and Training 

The time multiplexing step is as follows. The 

input 𝑢(𝑛) is multiplied by a random and fixed 

vector 𝑴, called the mask, with dimensions 
(𝑀 × 1). In this work, we consider a binary mask 

where the elements in 𝑴 take on the values of 1 

or −1 by random. The product 𝑴 ∙ 𝑢(𝑛) = 𝑱 is 

then scaled to an appropriate maximum and 

minimum voltage, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥. Optimal values 

for 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 were found by trial and error. 

A sequence of voltage pulses of total duration 𝜏 is 

generated by holding each component in 𝑱 

constant for a duration 𝛿, where 𝜏 = 𝑀 ∙ 𝛿. This 

voltage train is applied to each memristor in 

parallel to generate a current response of length τ. 

𝑀 virtual nodes are sampled from each memristor 

response at every time interval δ, the total virtual 

nodes of the network is 𝑀 × 𝑁, where 𝑁 is the 

number of memristors in parallel. The collection 

of virtual nodes makes up the elements of 𝒔(𝑛), 

the reservoir state vector. For every 𝑢(𝑛) in the 

training dataset, 𝒔(𝑛) will make up the columns 

of 𝑺. Training is done by finding the weight 

matrix 𝑾 which minimizes the distance between 

the output of the RC network 𝑾𝑺 and the targets 

𝒀, that is minimizes ||𝑾𝑺 − 𝒀 ||. This is done by 

choosing 

𝑾 = 𝒀𝑺𝑻(𝑺𝑺𝑻)† (6) 

 

 

Once the network is trained, a separate dataset is 

used to evaluate the performance of the RC 

network. 

2. Generating Time-Series Datasets 

The time series datasets are generated using 

equations (1) & (2) or (3). For each time series 

task, 2001 iterations are generated far away from 

the initial conditions of the sequences. The 

iterations 2 to 1001 are used for training and the 

iterations 1002 to 2001 are used for testing. To 

avoid the initial transient phase of the reservoir, 

the first 5 points of the reservoir output and the 

target sequence are thrown out in both training 

and testing datasets for the Hénon map 

prediction. Likewise, for the Mackey-Glass 

oscillator prediction, the first 20 are thrown out of 

the reservoir output and target for training and 

testing datasets. 

 

3. Memristor Model 

The parameters for the numerical model 

described by equations (5) and (6) have the 

following values: γ = 2.14 × 10−6,  𝑑 =  1.4, 

λ =  1300, κ = 400 × 10−6, and 𝑤0 = 0.5. This 

model describes the dynamics of the state 

variable 𝑤(𝑡), a dimensionless variable related to 

conductance which affects how much current will 

pass through the memristor for a given voltage 

𝑉(𝑡); when 𝑤(𝑡) is large, the magnitude of the 

current response will increase. The window 

function: 
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fixes 𝑤 between 0 and 1. 𝑤 will increase when 

there is a positive voltage and decrease when 

there is a negative voltage. In equation (5), short 

term memory is achieved with the second term in 

the first equation. Parameter κ is the decay time 

constant which describes how fast the model 

returns to its equilibrium state. For our model, the 

parameter κ is set to 400 μ𝑠. Equation (5) was 

solved using first order Runge-Kutta algorithm 

with a time step of 1μ𝑠. 
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