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Abstract. This project introduces deep neural networks and the various ways to tune the hyper-
parameters of a deep neural network. I use the Fashion-MNIST classification task as a toy problem
to investigate the effect of various network shapes, different optimizers, the effect of regularization,
different initialization conditions, and batch normalization

1. Introduction and Overview

Deep neural networks (DNNs) are one of the most famous algorithms to come out of the field
of machine learning. Although relatively simple in concept compared to other neural network
archetypes, there many techniques in which the scientist using DNNs can tune their network for
greater performance. This report will survey the different hyper-parameters one can tune in a DNN
in the context of the Fashion-MNIST classification task.
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Figure 1. (Left) Illustrations of deep neural network [1]. (Right) Fashion-MNIST
dataset [2].
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2. Theoretical Background

A illustration of DNNs are given in figure(1). Inputs propagate through the network in the
following way. If x⃗i is the output of layer i, and w⃗i are their weighted connections between the
layer i and layer i+ 1, then x⃗i+1 = f(w⃗i · x⃗i) where f is a activation function.

The network is trained such that the quantity produced at the output layer is similar to a desired
label. A loss function is used to measure the degree of ”rightness” of the network’s output. In this
work, I use the cross entropy loss:

(1) L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ))

where ŷ is the output of the network and y is the desired label. The weights in the network are
iteratively updated during the training process using gradient descent.

(2) w⃗k+1 = w⃗k − α∇w⃗k
L(ŷ, y)

where α is the learning rate. If a network only had the input and output layer, then

(3) ∇w⃗k
L(ŷ, y) =

∂L

∂ŷ

∂ŷ

∂z
∇w⃗z

with z = w⃗ · x⃗. In a network with more layers, partial derivatives of weights occurring in the first
layers will be nested in the weights of layers toward the end of the network. By the chain-rule,
partial derivatives are computed backwards across the network, layer by layer, to compute the total
gradient. This process is called backward propagation.

Stochastic gradient descent computes the gradient and updates the weights after each input is
passed through the network. Often, the training is done in batches, where the gradient of the loss
is accumulated as a handful inputs are passed through. Some more advanced gradient descent
techniques include AdaDelta, which uses an adaptive learning rate, and Adam, which uses an
accelerated gradient vector and adaptive learning rate.

As mentioned before, the training dataset can be divided into batches. An entire pass through
of the training dataset is called an epoch. After each epoch, a validation is done by ’quizzing’ the
network on a subset of the training data.

There are additional ways to tune a network. One can consider regularization, which changes the
loss function to avoid overfitting in the training dataset, batch normalization, which may help with
the issue of exploding or vanishing gradients, or different initialization conditions of the network.
All that has been described above about the larger rules of the network constitute what is called
hyperparameter tuning.

3. Algorithm Implementation and Development

This project makes extensive use of torch and related packages. The Fashion MNIST dataset
was taken from the torchvision package. Neural network model layers, relu activation functions,
cross entropy loss, optimizers, was done with torch commands. The splitting of the training and
testing data was done with sklearn.

4. Computational Results

The Fashion MNIST dataset of 28 × 28 pixel images has 60, 000 images in the training set and
10, 000 images. Furthermore, the images in the training dataset are split into batches of size 512,
where 51 of these were used for validation. The test batches are size 256.

The first thing I explored was the effect of different network shapes. I considered 3 different
networks with similar number of neurons: one with 1 hidden layer with 128 neurons, one with
2 hidden layers with 64 neurons, and one with 3 hidden layers with 42 neurons. Each of these
networks used cross entropy loss and stocastic gradient descent with learning rate of 0.01. Relu
activation was used in all the layers except the output layers. In figure(2), you can see the results of
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Network Testing Accuracy (%)
In-128-Out 85.20± 2.21
In-64-64-Out 85.23± 1.94

In-42-42-42-Out 84.80± 1.88
In-128-Out (Dropout) 85.11± 2.57

Figure 2. Comparison between different network shapes.

Optimizer Testing Accuracy (%)
Stochastic Gradient Descent 85.20± 2.21

AdaDelta 84.28± 2.31
Adam 87.55± 2.12

Figure 3. Comparison between different optimizers

this. From the loss and the validation accuracy curves, we can see the networks with denser layers,
like the single 128 hidden layer network, seem to perform better, especially at less than 10 epochs.
As the number of epochs increases near 50, these different networks start to converge, and the error
in their validation curves begins to overlap. Likewise, after 50 epochs of training these networks
performed very similarly on the testing data, each falling within the error bounds of each other’s
testing accuracy. This test suggests that for Fashion MNIST classification, if neuron number is
constant, denser layers tend to perform and train better with given a small number of epochs.
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Network Testing Accuracy (%)
Baseline 85.20± 2.21
Xavier 85.85± 2.07

Batch Normalization 86.61± 2.13

Figure 4. Evaluation of Xavier initialization and batch normalization.

Comparing the validation curves to the testing accuracy, it seems like none of the three networks
shapes had any issues with overfitting, as the testing accuracy fell within the validation accuracy
at the 50th epoch. To make sure, I trained an additional network with the single 128 hidden layer
network shape with added dropout regularization, which should aid in negating the overfitting
effect. The testing accuracy of this dropout-network is given in the table in figure(2). It can be
seen that there was no real difference with the added regularization, which was to be expected
because the networks were able to perform similarly in the validation and testing steps.

Keeping the single 128 hidden layer network as a baseline, I explore the effect of different opti-
mizers: Stochastic Gradient Descent (SGD), AdaDelta, and Adam. For each of these optimizers, I
keep the learning rate constant at 0.01 (although this may not be appropriate because this param-
eter can mean something different for each optimizer, I did not want to change too many things
at once). The results are summarized in figure(3). Out of the three optimizers, there was a clear
winner. While the SGD and AdaDelta networks performed similarly, falling within each other’s
error bounds for validation and testing accuracy, the Adam network performed 2− 3% better than
the other two in validation and testing. In fact, looking at the validation graph, the Adam network
with a single epoch of training competitive with the other two networks with 50 epochs of training.
It was expected that Adam would converge the fastest, as the Adam optimizer uses ’accelerated’
gradient vectors to converge faster.

Finally, I considered the effect of batch normalization and Xavier initialization. These can be
useful because they help to solve the issue of vanishing and exploding gradients during training.
Batch normalization refers to normalizing the outputs at every layer. Xavier initialization refers to
initializing the weights from a normal distribution dependent on the number of input and output
neurons. In figure(4), using the single 128 hidden layer with SGD as a baseline, I see how adding
Xavier initialization or batch normalization effect the training and testing of the network. As can
be seen, Xavier normalization makes the network train more quickly at the start, but then has little
effect later on. Batch normalization makes the network train faster and reach an overall higher
accuracy in during testing.
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5. Summary and Conclusions

This project was an introduction to DNN and the various ways one can tune hyperparameters
in a DNN. I found this to be very useful and practical considering how ubiquitous DNN are in the
world of machine learning. I am sure I will refer back to this project if I ever need a refresher on
how DNNs work.

6. Code Repository

The code for this project can be found here.
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